Evidence for Altered Phosphoinositide Signaling-Associated Molecules in the Postmortem Prefrontal Cortex of Patients with Schizophrenia

Author:

Kunii Yasuto,Matsumoto JunyaORCID,Izumi RyutaORCID,Nagaoka Atsuko,Hino MizukiORCID,Shishido Risa,Sainouchi Makoto,Akatsu HiroyasuORCID,Hashizume Yoshio,Kakita Akiyoshi,Yabe Hirooki

Abstract

Phosphoinositides (PIs) play important roles in the structure and function of the brain. Associations between PIs and the pathophysiology of schizophrenia have been studied. However, the significance of the PI metabolic pathway in the pathology of schizophrenia is unknown. We examined the expression of PI signaling-associated proteins in the postmortem brain of schizophrenia patients. Protein expression levels of phosphatidylinositol 4-phosphate 5-kinase type-1 gamma (PIP5K1C), phosphatidylinositol 4-kinase alpha (PIK4CA, also known as PIK4A), phosphatase and tensin homolog deleted from chromosome 10 (PTEN), protein kinase B (Akt), and glycogen synthase kinase 3β (GSK3β) were measured using enzyme-linked immunosorbent assays and multiplex fluorescent bead-based immunoassays of the prefrontal cortex (PFC) of postmortem samples from 23 schizophrenia patients and 47 normal controls. We also examined the association between PIK4CA expression and its genetic variants in the same brain samples. PIK4CA expression was lower, whereas Akt expression was higher, in the PFC of schizophrenia patients than in that of controls; PIP5K1C, PTEN, and GSK3β expression was not different. No single-nucleotide polymorphism significantly affected protein expression. We identified molecules involved in the pathology of schizophrenia via this lipid metabolic pathway. These results suggest that PIK4CA is involved in the mechanism underlying the pathogenesis of schizophrenia and is a potential novel therapeutic target.

Funder

Ministry of Education, Culture, Sports, Science, and Technology of Japan

Japan Agency for Medical Research and Development

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3