The Presynaptic Scaffold Protein Bassoon in Forebrain Excitatory Neurons Mediates Hippocampal Circuit Maturation: Potential Involvement of TrkB Signalling

Author:

Annamneedi AnilORCID,del Angel Miguel,Gundelfinger Eckart D.,Stork OliverORCID,Çalışkan Gürsel

Abstract

A presynaptic active zone organizer protein Bassoon orchestrates numerous important functions at the presynaptic active zone. We previously showed that the absence of Bassoon exclusively in forebrain glutamatergic presynapses (BsnEmx1cKO) in mice leads to developmental disturbances in dentate gyrus (DG) affecting synaptic excitability, morphology, neurogenesis and related behaviour during adulthood. Here, we demonstrate that hyperexcitability of the medial perforant path-to-DG (MPP-DG) pathway in BsnEmx1cKO mice emerges during adolescence and is sustained during adulthood. We further provide evidence for a potential involvement of tropomyosin-related kinase B (TrkB), the high-affinity receptor for brain-derived neurotrophic factor (BDNF), mediated signalling. We detect elevated TrkB protein levels in the dorsal DG of adult mice (~3–5 months-old) but not in adolescent (~4–5 weeks-old) mice. Electrophysiological analysis reveals increased field-excitatory-postsynaptic-potentials (fEPSPs) in the DG of the adult, but not in adolescent BsnEmx1cKO mice. In line with an increased TrkB expression during adulthood in BsnEmx1cKO, blockade of TrkB normalizes the increased synaptic excitability in the DG during adulthood, while no such effect was observed in adolescence. Accordingly, neurogenesis, which has previously been found to be increased in adult BsnEmx1cKO mice, was unaffected at adolescent age. Our results suggest that Bassoon plays a crucial role in the TrkB-dependent postnatal maturation of the hippocampus.

Funder

Deutsche Forschungsgemeinschaft

Center for Behavioural Brain Sciences—CBBS promoted by Europäische Fonds für regionale Entwicklung—EFRE

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3