Estimation of Forest Height Using Google Earth Engine Machine Learning Combined with Single-Baseline TerraSAR-X/TanDEM-X and LiDAR

Author:

Bao Junfan123ORCID,Zhu Ningning4,Chen Ruibo5,Cui Bin6,Li Wenmei6ORCID,Yang Bisheng4ORCID

Affiliation:

1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China

2. National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China

3. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China

4. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China

5. Guangxi Zhuang Autonomous Region Institute of Natural Resources Remote Sensing, Nanning 530023, China

6. School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

Abstract

Forest height plays a crucial role in various fields, such as forest ecology, resource management, natural disaster management, and environmental protection. In order to obtain accurate and efficient measurements of forest height over large areas, in this study, Terra Synthetic Aperture Radar-X and the TerraSAR-X Add-on for Digital Elevation Measurement (TerraSAR-X/TanDEM-X), Sentinel-2A, and Shuttle Radar Topography Mission (SRTM) data were used, and various feature combinations were established in conjunction with measurements from Light Detection and Ranging (LiDAR). Classification and regression tree (CART), gradient-boosting decision tree (GBDT), random forest (RF), and support vector machine (SVM) algorithms were employed to estimate forest height in the study area. Independent validation on the basis of LiDAR forest height samples showed the following results: (1) Regarding feature combinations, the combination of coherence and decorrelation of volume scattering provided by TerraSAR-X/TanDEM-X data outperformed the combination of backscatter coefficient and local incidence angle, as well as the combination of coherence, decorrelation of volume scattering, backscatter coefficient, and local incidence angle. The best results (R2 = 0.67, RMSE = 2.89 m) were achieved with the combination of coherence and decorrelation of volume scattering using the GBDT and RF algorithms. (2) In terms of machine learning methods, the GBDT algorithm proved suitable for estimating forest height. The most effective approach for forest height mapping involved combining the GBDT algorithm with coherence, decorrelation of volume scattering, and a small amount of LiDAR forest height data, used as training data.

Funder

National Natural Science Foundation Project

China Postdoctoral Science Foundation

Postdoctoral project of Gansu Province

Basic research top talent plan of Lanzhou Jiaotong University

Guangxi Zhuang Autonomous Region Institute of Remote Sensing for Natural Resources

Publisher

MDPI AG

Subject

Forestry

Reference60 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3