Drought Exerted a Stronger Controlling Effect on Soil Carbon Release than Moisturizing in a Global Meta-Analysis

Author:

Xiao Jiamin1,Lin Yonghui1,He Xingbing1,He Zaihua1,Kong Xiangshi2ORCID

Affiliation:

1. College of Biology and Environmental Sciences, Jishou University, Jishou 416000, China

2. College of Tourism and Management Engineering, Jishou University, Zhangjiajie 427000, China

Abstract

The carbon cycle within a terrestrial ecosystem is a pivotal functional process that drives ecosystem evolution, and the precipitation pattern variations exert a profound influence on it. To comprehensively assess the response of carbon release in the global terrestrial ecosystem to water variation, we performed a global meta-analysis by extracting data from 144 publications. Additionally, we incorporated various moderators to elucidate the heterogeneity observed in the data. The results showed that soil carbon release was highly sensitive to water variation, with drying and moisturizing treatments responding differently to water variability. Specifically, drought inhibited the soil carbon release of terrestrial ecosystems (24% reduction in effect size), but precipitation promoted it (11% increase in effect size). Moreover, this sensitivity could be affected by other ambient factors, depending on water manipulation (drying or moisturizing treatment). In moisturizing treatment cases, ambient precipitation, altitude, and vegetation type more or less affected the sensitivity of soil carbon release to a water increase. However, in drying treatment cases, these factors had no significant influence on the water sensitivity of soil carbon release. Unlike the above ambient factors, a temperature increase strengthened this sensitivity in both of the treatments. In addition, our study also showed that the response of carbon release to water variation did not depend on the substrate type or the carbon–nitrogen ratio (C/N) of the substrates, revealing that these effect factors on carbon release on the local scale could be overshadowed by water conditions. Overall, water variation positively affected soil carbon release on the global scale. Particularly, drought had a strong controlling effect on carbon release over the other environmental factors. Therefore, the impact of soil water loss on carbon release should be of great concern for the management of ecosystems and the prediction of carbon release models, especially when high temperatures and drought have been occurring more and more frequently on the planet in recent years.

Funder

The National Natural Science Foundation of China

The Key Program of Scientific Research Project of Hunan Provincial Education Department

The General Program of Scientific Research Project of Hunan Provincial Education Department

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3