Monitoring of Damage in Composite Structures Using an Optimized Sensor Network: A Data-Driven Experimental Approach

Author:

Ručevskis Sandris1ORCID,Rogala Tomasz2ORCID,Katunin Andrzej2ORCID

Affiliation:

1. Institute of Materials and Structures, Riga Technical University, Kipsalas Iela 6A, LV-1048 Riga, Latvia

2. Department of Fundamentals of Machinery Design, Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18A, 44-100 Gliwice, Poland

Abstract

Due to the complexity of the fracture mechanisms in composites, monitoring damage using a vibration-based structural response remains a challenging task. This is also complex when considering the physical implementation of a health monitoring system with its numerous uncertainties and constraints, including the presence of measurement noise, changes in boundary and environmental conditions of a tested object, etc. Finally, to balance such a system in terms of efficiency and cost, the sensor network needs to be optimized. The main aim of this study is to develop a cost- and performance-effective data-driven approach to monitor damage in composite structures and validate this approach through tests performed on a physically implemented structural health monitoring (SHM) system. In this study, we combined the mentioned research problems to develop and implement an SHM system to monitor delamination in composite plates using data combined from finite element models and laboratory experiments to ensure robustness to measurement noise with a simultaneous lack of necessity to perform multiple physical experiments. The developed approach allows the implementation of a cost-effective SHM system with validated predictive performance.

Funder

European Regional Development Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3