Enhancing BCI-Based Emotion Recognition Using an Improved Particle Swarm Optimization for Feature Selection

Author:

Li Zina,Qiu Lina,Li Ruixin,He Zhipeng,Xiao Jun,Liang Yan,Wang FeiORCID,Pan Jiahui

Abstract

Electroencephalogram (EEG) signals have been widely used in emotion recognition. However, the current EEG-based emotion recognition has low accuracy of emotion classification, and its real-time application is limited. In order to address these issues, in this paper, we proposed an improved feature selection algorithm to recognize subjects’ emotion states based on EEG signal, and combined this feature selection method to design an online emotion recognition brain-computer interface (BCI) system. Specifically, first, different dimensional features from the time-domain, frequency domain, and time-frequency domain were extracted. Then, a modified particle swarm optimization (PSO) method with multi-stage linearly-decreasing inertia weight (MLDW) was purposed for feature selection. The MLDW algorithm can be used to easily refine the process of decreasing the inertia weight. Finally, the emotion types were classified by the support vector machine classifier. We extracted different features from the EEG data in the DEAP data set collected by 32 subjects to perform two offline experiments. Our results showed that the average accuracy of four-class emotion recognition reached 76.67%. Compared with the latest benchmark, our proposed MLDW-PSO feature selection improves the accuracy of EEG-based emotion recognition. To further validate the efficiency of the MLDW-PSO feature selection method, we developed an online two-class emotion recognition system evoked by Chinese videos, which achieved good performance for 10 healthy subjects with an average accuracy of 89.5%. The effectiveness of our method was thus demonstrated.

Funder

Natural Science Foundation of Guangdong Province

Pearl River S and T Nova Program of Guangzhou

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 41 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3