Bathurst Burr (Xanthium spinosum) Powder—A New Natural Effective Adsorbent for Crystal Violet Dye Removal from Synthetic Wastewaters

Author:

Mosoarca GianninORCID,Vancea Cosmin,Popa Simona,Boran Sorina

Abstract

A new natural adsorbent material, Bathurst burr powder, was used to remove crystal violet dye from synthetic wastewaters. Particle size distribution and SEM and FTIR analyses were performed to characterize it. The effect of the operational adsorption process parameters (pH, ionic strength, initial dye concentration, adsorbent dose, contact time, temperature) onto the adsorption process was evaluated in a batch system. Equilibrium, kinetic, and thermodynamic studies were performed in order to understand the adsorption process. Taguchi method and ANOVA test were used to optimize the dye adsorption conditions and to establish the percentage contribution of each factor, respectively. The accuracy of the Taguchi prediction method was analyzed by correlating the predicted dye removal efficiency with the experimentally determined one. The particle size distribution analysis showed that 82.15% of the adsorbent particles have an average size below 0.5 mm. The adsorption process followed the Langmuir isotherm and pseudo-second order kinetic model. Maximum adsorption capacity value (164.10 mg·g−1) was higher compared to many similar adsorbents. The process was endothermic, spontaneous, and favorably involving a physisorption mechanism. The Taguchi method showed that the most influential controllable factor was pH (65% contribution in adsorption efficiency) and the data analysis indicates a very good accuracy of the experimental design (R2 = 0.994). The obtained results demonstrated that Bathurst burr powder can be used as a cheap and efficient adsorbent for crystal violet dye removal from aqueous solution.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3