Abstract
Recently, interest in environmentally friendly development has increased worldwide, especially in the construction industry. In this study, blast furnace slag powder (BFSP) and mixed steel fine aggregates were applied to cement mortars to reduce the environmental damage caused by the extraction of natural aggregate and to increase the recycling rate of steel by-products in the construction industry. We investigated the fluidity, compressive strength, tensile strength, accelerated carbonation depth, and chloride ion penetration resistance of mortars with steel slag aggregate and their dependence on the presence or absence of BFSP. Because the recycling rate of ferronickel slag is low and causes environmental problems, we considered mortar samples with mixed fine aggregates containing blast furnace slag fine aggregate (BSA) and ferronickel slag fine aggregate (FSA). The results showed that the 7-day compressive strength of a sample containing both 25% BSA and 25% FSA was nearly 14.8% higher than that of the control sample. This trend is likely due to the high density and angular shape of steel slag particles. The 56-day compressive strength of the sample with BFSP and 50% FSA was approximately 64.9 MPa, which was higher than that of other samples with BFSP. In addition, the chloride ion penetrability test result indicates that the use of BFSP has a greater effect than the use of steel slag aggregate on the chloride ion penetration resistance of mortar. Thus, the substitute rate of steel slag as aggregate can be substantially enhanced if BFSP and steel slag aggregate are used in an appropriate combination.
Funder
National Research Foundation of Korea
Subject
General Materials Science
Reference33 articles.
1. Bond Characteristics of Concrete using Blast-Furnace Slag;Ra;J. Korea Inst. Build. Constr.,2013
2. Use of granulated blast furnace slag as fine aggregate in cement mortar;Nataraja;Int. J. Struct. Civ. Eng. Res.,2013
3. Study of Granulated Blast Furnace Slag as Fine Aggregates in Concrete for Sustainable Infrastructure
4. The Study on Optimization of Cement and Fine Aggregate by Blast Furnace Slag in Concrete;Singh;AIP Conf. Proc.,2019
5. Evaluation of Strength and Durability of Mortar using Ferronickel Slag Powder and Admixtures;Jo;J. Rec. Const. Resour.,2019
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献