Abstract
Thermoplastic materials have established a reputation for long-term reliability in low-pressure gas and water distribution pipe systems. However, occasional Slow Crack Growth (SCG) and Rapid Crack Propagation (RCP) failures still occur. SCG may initiate only a small leak, but it has the potential to trigger RCP, which is much rarer but more catastrophic and destructive. RCP can create a long, straight or meandering axial crack path at speeds of up to hundreds of meters per second. It is driven by internal (residual) and external (pressure) loads and resisted by molecular and morphological characteristics of the polymer. The safe installation and operation of a pipe throughout its service lifetime therefore requires knowledge of its resistance to RCP, particularly when using new materials. In this context, the RCP resistance of five different polyamide (PA) 12 grades was investigated using the ISO 13477 Small-Scale Steady State (S4) test. Since these grades differed not only in molecular weight but also in their use of additives (impact modifiers and pigments), structure-property relationships could be deduced from S4 test results. A new method is proposed for correlating these results more efficiently to evaluate each grade using the crack arrest lengths from individual S4 test specimens.
Subject
General Materials Science
Reference34 articles.
1. Thermoplastics Pipes for the Conveyance of Fluids—Determination of Resistance to Rapid Crack Propagation (RCP)—Small-Scale Steady-State Test (S4 Test),2008
2. Rapid crack propagation failures in HDPE pipes: Structure–property investigations
3. Polymer toughness and impact resistance
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献