Trivalent Ions and Their Impacts on Effective Conductivity at 300 K and Radio-Protective Behaviors of Bismo-Borate Glasses: A Comparative Investigation for Al, Y, Nd, Sm, Eu

Author:

ALMisned Ghada,Tekin Huseyin O.,Bilal Ghaida,Ene AntoanetaORCID,Kilic GokhanORCID,Issa Shams A. M.ORCID,Algethami MerfatORCID,Zakaly Hesham M. H.ORCID

Abstract

We aimed to determine the contribution of various trivalent ions like Al and rare-earths (Y, Nd, Sm, Eu) on resistance behaviors of different types of bismo-borate glasses. Accordingly, eight different bismuth borate glasses from the system: 40Bi2O3–59B2O3–1Tv2O3 (where Tv = Al, Y, Nd, Sm, and Eu) and three glasses of (40Bi2O3–60B2O3; 37.5Bi2O3–62.5B2O3; and 38Bi2O3–60B2O3–2Al2O3) compositions were extensively investigated in terms of their nuclear attenuation shielding properties, along with effective conductivity and buildup factors. The Py-MLBUF online platform was also utilized for determination of some essential parameters. Next, attenuation coefficients, along with half and tenth value layers, have been determined in the 0.015 MeV–15 MeV photon energy range. Moreover, effective atomic numbers and effective atomic weight, along with exposure and energy absorption buildup factors, were determined in the same energy range. The result showed that the type of trivalent ion has a direct effect on behaviors of bismo-borate glasses against ionizing gamma-rays. As incident photon energy increases, the effective thermal conductivity decreases rapidly, especially in the low energy range, where photoelectric effects dominate the photon–matter interaction. Sample 8 had the minimum heat conductivity at low photon energies; our findings showed that Eu-reinforced bismo-borate glass composition, namely 40Bi2O3–59B2O3–1Eu2O3, with a glass density of 6.328 g/cm3 had superior gamma-ray attenuation properties. These outcomes would be useful for the scientific community to observe the most suitable additive rareearth type and related glass composition for providing the aforementioned shielding properties, in terms of needs and utilization requirements.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3