Optical Rail Surface Crack Detection Method Based on Semantic Segmentation Replacement for Magnetic Particle Inspection

Author:

Kou LeiORCID,Sysyn MykolaORCID,Fischer SzabolcsORCID,Liu Jianxing,Nabochenko Olga

Abstract

Railway damage detection is of great significance in ensuring railway safety. The cracks on the rail surface play a key role in studying the formation and development process of rail damage, predicting the occurrence of rail defects, and then improving the service life of the rail. However, due to the small shape of the cracks, the typical detection method is relatively complicated, and the speed is quite slow. Although traditional magnetic particle inspection technology is fairly accurate at detection, it is costly and inconvenient to carry and install, while also limiting the detection speed and affecting the system’s operation. In this paper, a semantic segmentation detection method is developed by using various collected rail surface crack data and deep learning through a neural network. By comparing the inspection of the same rail surface with magnetic particle inspection technology, only inexpensive cameras are used and the inspection speed is increased while maintaining relatively high accuracy. In addition, the method can achieve fast detection speeds if it is extended to be combined with high-frequency cameras. It is an economical, efficient, and environmentally friendly method for future rail surface detection.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3