Estimating Canopy Resistance Using Machine Learning and Analytical Approaches

Author:

Hsieh Cheng-I1ORCID,Huang I-Hang1,Lu Chun-Te1

Affiliation:

1. Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10673, Taiwan

Abstract

Canopy resistance is a key parameter in the Penman–Monteith (P–M) equation for calculating evapotranspiration (ET). In this study, we compared a machine learning algorithm–support vector machine (SVM) and an analytical solution (Todorovic, 1999) for estimating canopy resistances. Then, these estimated canopy resistances were applied to the P–M equation for estimating ET; as a benchmark, a constant (fixed) canopy resistance was also adopted for ET estimations. ET data were measured using the eddy-covariance method above three sites: a grassland (south Ireland), Cypress forest (north Taiwan), and Cryptomeria forest (central Taiwan) were used to test the accuracy of the above two methods. The observed canopy resistance was derived from rearranging the P–M equation. From the measurements, the average canopy resistances for the grassland, Cypress forest, and Cryptomeria forest were 163, 346, and 321 (s/m), respectively. Our results show that both methods tend to reproduce canopy resistances within a certain range of intervals. In general, the SVM model performs better, and the analytical solution systematically underestimates the canopy resistances and leads to an overestimation of evapotranspiration. It is found that the analytical solution is only suitable for low canopy resistance (less than 100 s/m) conditions.

Funder

Ministry of Science and Technology, Taiwan

Core Research Project, National Taiwan University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference28 articles.

1. Allen, R.G., Pereira, L.S., Raes, D., and Smith, M. (1998). Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56, FAO.

2. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validate at 16 FLUXNET sites;Fisher;Remote Sens. Environ.,2008

3. Long-term regional estimates of evapotranspiration for Mexico based on downscaled ISCCP data;Sheffield;J. Hydrometeorol. Res.,2010

4. What controls the error structure in evapotranspiration models?;Polhamus;Agric. For. Meteor.,2013

5. Modelling evapotranspiration of six irrigated crops under Mediterranean climate conditions;Katerji;Agric. For. Meteor.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3