Optimization of Fe(II)/SPC Sludge Conditioning and Dewatering Process Based on Response Surface Methodology: Full-Scale Application

Author:

Zhou Siru1,Chen Chuanhan1,Li Ruohong123ORCID

Affiliation:

1. Department of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China

2. Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China

3. Shenzhen Engineering Research Laboratory for Sludge and Food Waste Treatment and Resource Recovery, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

Abstract

Sludge conditioning is a crucial step in sludge dewatering aimed at minimizing excessive sludge production. The Fenton process, which harnesses oxidative radicals to dismantle extracellular polymeric substances (EPS) and microorganisms, has been unequivocally proven to enhance sludge dewaterability. However, the widespread adoption of the Fenton process is hampered by its high costs and logistical challenges in transportation. In contrast, the Fe(II)-activated sodium percarbonate (Fe(II)/SPC) process has emerged as a promising technology for sludge conditioning due to its remarkable performance and safe operation. However, limited information is available regarding the optimization of Fe(II)/SPC for sludge conditioning and dewatering at full scale. This study conducted the sludge conditioning and dewatering process within a full-scale wastewater treatment plant, utilizing the response surface methodology (RSM) to optimize the Fe(II)/SPC process. Furthermore, this study investigated its impact on sludge structure and compared the economic benefits of the Fe(II)/SPC process with other full-scale conditioning processes. The results of bound water and LDH analysis revealed that the Fe(II)/SPC process not only degraded EPS but also disrupted microbial cells, thereby releasing intracellular water. Based on the RSM results, we successfully established a polynomial prediction model to determine the optimal capillary suction time (CST) and moisture content. The optimal parameters determined through RSM were an initial pH of 3.02, Fe(II) dosage of 0.05 g/g TSS, and SPC dosage of 0.07 g/g TSS. The validation test confirmed the accuracy of the prediction results, with the conditioned sludge exhibiting a CST of 31.6 s and a moisture content of 51.47%. Furthermore, when compared to the PFS and Fenton processes, the Fe(II)/SPC process demonstrated higher economic efficiency and safety, while maintaining good dewatering performance. Overall, the Fe(II)/SPC treatment shows promise as a prospective sludge dewatering and conditioning process.

Funder

Key-Area Research and Development Program of Guangdong Province

National Natural Science Foundation of China

Guangdong Basic and Applied Basic Research Foundation

Shenzhen Knowledge Innovation Program-Basic Research Project

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3