Selective Separation of Scheelite from Calcite by Self-Assembly of H2SiO3 Polymer Using Al3+ in Pb-BHA Flotation

Author:

Wei Zhao,Hu Yuehua,Han Haisheng,Sun Wei,Wang Ruolin,Sun Wenjuan,Wang Jianjun,Gao ZhiyongORCID,Wang Li,Zhang Chenyang,Sun Lei,Liu Ruohua

Abstract

The flotation separation of scheelite from calcite is problematic, where sodium silicate modified by polyvalent metal ions has shown some advantages for selective depression. In this study, an Al-Na2SiO3 polymer was used as the depressant for the flotation separation of scheelite from calcite using a lead complex of benzohydroxamic acid (Pb-BHA) as the collector. Furthermore, a number of measurements were conducted to investigate the structure of the Al-Na2SiO3 polymer and its adsorption behavior with Pb-BHA complexes on the mineral surface. Flotation experiments indicated that the Al-Na2SiO3 polymer shows good selectivity for the flotation separation of scheelite from calcite at pH 8, where the optimum ratio of sodium silicate to aluminum sulfate was 2:1. Fourier-Transform Infrared (FTIR) and solution chemical analyses revealed that aluminum hydroxide complexes and the hydroxy moiety of silicic acid are able to self-assemble via condensation affording an Al-Na2SiO3 polymer, i.e., a composite aluminosilicate polymer. The zeta potential measurements and adsorption capacity measurements indicated that, upon adsorption of the Al-Na2SiO3 polymer and Pb-BHA complexes on the mineral surface, the Al-Na2SiO3 polymer had less influence on the adsorption of Pb-BHA complexes on the scheelite surface, while the opposite was true for calcite. Therefore, more Pb-BHA complexes and fewer Al-Na2SiO3 polymers were deposited on the scheelite surface, while fewer Pb-BHA complexes and more Al-Na2SiO3 polymers were adsorbed on the calcite surface. The selective separation of scheelite from calcite was attributed to the cooperative selectivity of the Pb-BHA complexes and Al-Na2SiO3 polymer.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3