Thermodynamic Investigation of the Sulphation Roasting of Electric Arc Furnace Dust

Author:

Pickles Christopher A.,Marzoughi Omid

Abstract

During the remelting of automobile scrap in the electric arc furnace steelmaking process, a dust is generated. This dust contains significant amounts of zinc, iron, and lead and in some cases, copper and nickel. However, the recovery of these metals is difficult, because of the complex chemical and physical characteristics of the dust. Numerous pyrometallurgical, hydrometallurgical and hybrid processes have been devised and tested for metal recovery, but only the Waelz rotary kiln process has achieved significant commercialisation. One potential process, which has received little attention in the literature, is the pyrometallurgical sulphation of the dust. In the present research, a high temperature thermodynamic model has been developed using HSC® Chemistry 7.1, to investigate the sulphation of the dust. The effects of process parameters on the conversion of the various metals into sulphates were studied. At a temperature of 600 °C, almost one hundred percent of the zinc could be converted into zinc sulphate, while about ninety-five percent of the iron could be retained as hematite. In addition, several low cost, potential sulphating reagents were evaluated.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Galvanizing Residue and Electrical Arc Furnace (EAF) Dust;The Minerals, Metals & Materials Series;2023

2. Direct reduced iron and zinc recovery from electric arc furnace dust;Journal of Chemical Technology & Biotechnology;2022-08-11

3. Separation of iron and zinc components dust of gas cleaning devices of the electric steelmaking productions;Proceedings of the National Academy of Sciences of Belarus, Chemical Series;2022-06-08

4. Comprehensive Study on the Mechanism of Sulfating Roasting of Zinc Plant Residue with Iron Sulfates;Materials;2021-09-02

5. Microwave assisted chloride leaching of zinc plant residues;Journal of Hazardous Materials;2020-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3