Assessment of Existing Fate and Transport Models for Predicting Antibiotic Degradation and Transport in the Aquatic Environment: A Review

Author:

Addis Temesgen Zelalem1ORCID,Adu Joy Tuoyo1ORCID,Kumarasamy Muthukrishnavellaisamy12ORCID,Demlie Molla3ORCID

Affiliation:

1. Civil Engineering Programme, School of Engineering, University of KwaZulu-Natal, Durban 4041, South Africa

2. Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai 600072, India

3. Department of Geological Science, University of KwaZulu-Natal, Durban 4041, South Africa

Abstract

In recent years, the use of antibiotics for human medicine, animal husbandry, agriculture, aquaculture, and product preservation has become a common practice. The use and application of antibiotics leave significant residues in different forms, with the aquatic environment becoming the critical sink for accumulating antibiotic residues. Numerous studies have been conducted to understand antibiotic removal and persistence in the aquatic environment. Nevertheless, there is still a huge knowledge gap on their complex interactions in the natural environment, their removal mechanism, and the monitoring of their fate in the environment. Water quality models are practical tools for simulating the fate and transport of pollutant mass in the aquatic environment. This paper reports an overview of the physical, chemical, and biological elimination mechanisms responsible for the degradation of antibiotics in natural surface water systems. It provides an in-depth review of commonly used quantitative fate models. An effort has been made to provide a compressive review of the modeling philosophy, mathematical nature, environmental applicability, parameter estimation, prediction efficiency, strength, and limitation of commonly used environmental antibiotic fate models. The study provides information linking paradigms of elimination kinetics and their simulation in the antibiotic fate models aiming at critical issues regarding current model development and future perspectives and to help users select appropriate models for practical water quality assessment and management.

Funder

Water Research Commission of South Africa

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3