The Mechanism of Dust Transportation Based on Wind Tunnel Experiments and Numerical Simulations

Author:

Yang Jinduo1,Li Xi’an1ORCID,Wang Weiping1,Chai Hao1,An Mingxiao1,Dai Qianyi1

Affiliation:

1. College of Geology Engineering & Geomatics, Chang’an University, Xi’an 710054, China

Abstract

The process of dust transportation is widespread, leading to the formation of regions such as the Loess Plateau. In order to understand the mechanisms of dust particle transportation, this study conducted wind tunnel experiments to simulate natural wind-driven dust transport processes. Theoretical derivations were carried out to establish the relationship between particle size and transportation distance, which was then validated through numerical simulations. The following conclusions were drawn: (1) wind tunnel experiments, theoretical derivations, and numerical simulations yielded consistent results, indicating the effectiveness of the wind tunnel experiments; (2) Under the influence of wind forces, the ideal transportation distance of particles is inversely proportional to the square of their size; (3) turbulent wind fields have a minor impact on dust transport, while particle roundness has a significant effect on transport; (4) clay particles and dust particles in loess regions share the same source areas and transport pathways.

Funder

National Natural Science Foundation of China

Key Laboratory of Survey, Monitoring and Protection of Natural Resources in Mining Cities, Ministry of Natural Resources

Publisher

MDPI AG

Reference37 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3