Affiliation:
1. College of Geology Engineering & Geomatics, Chang’an University, Xi’an 710054, China
Abstract
The process of dust transportation is widespread, leading to the formation of regions such as the Loess Plateau. In order to understand the mechanisms of dust particle transportation, this study conducted wind tunnel experiments to simulate natural wind-driven dust transport processes. Theoretical derivations were carried out to establish the relationship between particle size and transportation distance, which was then validated through numerical simulations. The following conclusions were drawn: (1) wind tunnel experiments, theoretical derivations, and numerical simulations yielded consistent results, indicating the effectiveness of the wind tunnel experiments; (2) Under the influence of wind forces, the ideal transportation distance of particles is inversely proportional to the square of their size; (3) turbulent wind fields have a minor impact on dust transport, while particle roundness has a significant effect on transport; (4) clay particles and dust particles in loess regions share the same source areas and transport pathways.
Funder
National Natural Science Foundation of China
Key Laboratory of Survey, Monitoring and Protection of Natural Resources in Mining Cities, Ministry of Natural Resources