Abstract
When learning to play a musical instrument, it is important to improve the quality of self-practice. Many systems have been developed to assist practice. Some practice assistance systems use special sensors (pressure, flow, and motion sensors) to acquire the control parameters of the musical instrument, and provide specific guidance. However, it is difficult to acquire the control parameters of wind instruments (e.g., saxophone or flute) such as flow and angle between the player and the musical instrument, since it is not possible to place sensors into the mouth. In this paper, we propose a sensorless control parameter estimation system based on the recorded sound of a wind instrument using only machine learning. In the machine learning framework, many training samples that have both sound and correct labels are required. Therefore, we generated training samples using a robotic performer. This has two advantages: (1) it is easy to obtain many training samples with exhaustive control parameters, and (2) we can use the correct labels as the given control parameters of the robot. In addition to the samples generated by the robot, some human performance data were also used for training to construct an estimation model that enhanced the feature differences between robot and human performance. Finally, a flute control parameter estimation system was developed, and its estimation accuracy for eight novice flute players was evaluated using the Spearman’s rank correlation coefficient. The experimental results showed that the proposed system was able to estimate human control parameters with high accuracy.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献