Abstract
Wireless microwave sensors provide a practical alternative where traditional contact-based measurement techniques are not possible to implement or suffer from performance deterioration. Resonating elements are commonly used in these sensors as the sensing concept relies on the resonance properties of the employed structure. This work presents some simple guidelines for designing displacement sensors based on spiral resonator (SR) tags. The working principle of this sensor is based on the variation of the coupling strength between the SR tag and a probing microstrip loop with the distance between them. The performance of the sensor depends on the main design parameters, such as tag dimensions, filling factor, number of turns, and the size of probing loop. The guidelines provided herein can be used for the initial phase of the design process by helping to select a preliminary set of parameters according to the desired application requirements. The provided conclusions are supported using electromagnetic simulations and analytical expressions. Finally, a corrected equivalent circuit model that takes into account the phenomenon of the resonant frequency shift at small distances is provided. The findings are compared against experimental measurements to verify their validity.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献