Unveiling Nilaparvata lugens Stål Genes Defining Compatible and Incompatible Interactions with Rice through Transcriptome Analysis and Gene Silencing

Author:

Rout Priyadarshini1,Ravindranath Nihal1ORCID,Gaikwad Dinkar1ORCID,Nanda Satyabrata1ORCID

Affiliation:

1. MS Swaminathan School of Agriculture, Centurion University of Technology and Management, Paralakhemundi 761211, Odisha, India

Abstract

The brown planthopper (Nilaparvata lugens Stål, BPH) is a major pest of rice (Oryza sativa L.), causing severe crop loss. Multiple biotypes and emerging populations of BPH pose a bigger challenge for the infestations control. Although several studies have been conducted to understand the molecular mechanisms of rice–BPH interactions, there are few studies dedicated to the Indian sub-continent BPH biotype (biotype 4). Here, we analyzed the transcriptomic, physiological, and gene-silencing responses of the BPH biotype 4 during the compatible (fed on susceptible Taichung Native 1, TN1 rice) and incompatible (fed on resistant PTB33 rice) rice–BPH interactions. In the incompatible interaction, a significant reduction in the honeydew production and negative weight gain were observed in the BPH. Similarly, the trehalose and glucose contents were found to be significantly high and low, respectively, during the incompatible rice–BPH interaction. The comparative BPH transcriptome analysis identified 1875 differentially expressive genes (DEGs) between the compatible and incompatible interactions from which many were annotated to be involved in vital BPH physiological processes, including cuticle development, sugar metabolism, detoxification, molting, and xenobiotics metabolism. The RNA interference-mediated independent silencing of three selected genes, including NlCP1, NlCYP320a1, and NlTret1, revealed that these genes are important for BPH physiology and survival. Moreover, the results of this study provide valuable insights into the rice–BPH interactions involving the BPH biotype 4.

Funder

Science and Engineering Research Board (SERB), Government of India

Publisher

MDPI AG

Subject

Microbiology (medical),Molecular Biology,General Medicine,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3