Effect of AISI H13 Steel Substrate Nitriding on AlCrN, ZrN, TiSiN, and TiCrN Multilayer PVD Coatings Wear and Friction Behaviors at a Different Temperature Level

Author:

Özkan Doğuş1ORCID,Yilmaz Mustafa Alper12,Karakurt Deniz3,Szala Mirosław4ORCID,Walczak Mariusz4ORCID,Bakdemir Seda Ataş15,Türküz Cenk6,Sulukan Egemen7ORCID

Affiliation:

1. Turkish Naval Academy, National Defence University, Tuzla 34942, İstanbul, Turkey

2. Graduate School of Science and Engineering, Mechanical Engineering, Yıldız Technical University, Beşiktaş 34349, İstanbul, Turkey

3. Barbaros Naval Science and Engineering Institute, National Defence University, Tuzla 34942, İstanbul, Turkey

4. Department of Materials Engineering, Faculty of Mechanical Engineering, Lublin University of Technology, 20-618 Lublin, Poland

5. Metallurgy and Materials Engineering, Marmara University, Göztepe 34722, İstanbul, Turkey

6. Titanit Ultrahard Coatings Company, Güngören 34173, İstanbul, Turkey

7. Maritime Faculty, Marine Engineering Department, Piri Reis University, Tuzla 34940, İstanbul, Turkey

Abstract

Moving components of industrial machines and tools are subjected to wear and friction. This reduces their useful life and efficiency in running conditions, particularly at high temperatures. One of the most popular solutions is to apply an appropriate surface coating to the tribocouple’s base materials. In this study, tribometer experiments were used to evaluate the tribological performance of cathodic arc physical vapor deposited (CAPVD) AlCrN, TiSiN, CrTiN, and ZrN coatings on the gas nitrided AISI H13 tool steel to explore the effects of nitriding the steel on wear and friction behavior of these coatings at ambient and elevated temperatures. The coatings characterization is split into three main parts: mechanical, morphological, and chemical characterization. Nanoindentation has been used for mechanical characterization, thin film X-ray diffraction (XRD), and an energy-dispersive X-ray spectrometer mounted on a scanning electron microscope for chemical characterization, optical profilometer, and atomic force microscopy (AFM) for morphological characterization. Significant improvements in the adhesion qualities of the coatings to the substrate were achieved as a result of nitration. Due to this circumstance, the coatings’ load-bearing capacity and high-temperature wear resistance ratings were enhanced. The wear results showed that the AISI H13 tool steel nitriding with AlCrN and ZrN layers decreased wear rates by two to three times at 700 °C.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3