Organobentonite Binder for Binding Sand Grains in Foundry Moulding Sands

Author:

Grabowska Beata1ORCID,Cukrowicz Sylwia1,Bobrowski Artur1,Drożyński Dariusz1ORCID,Żymankowska-Kumon Sylwia1,Kaczmarska Karolina1ORCID,Tyliszczak Bożena2ORCID,Pribulová Alena3

Affiliation:

1. Faculty of Foundry Engineering, AGH—University of Science and Technology, Reymonta 23, 30-059 Krakow, Poland

2. Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland

3. Faculty of Materials, Metallurgy and Recycling, Technical University of Košice, Letná 9, 042 00 Košice, Slovakia

Abstract

A series of studies related to the production of organobentonite, i.e., bentonite-poly(acrylic acid), and its use as a matrix grain-binding material in casting moulding sand is presented. In addition, a new carbon additive in the form of shungite was introduced into the composition of the moulding sand. Selected technological and strength properties of green sand bond with the obtained organobentonite with the addition of shungite as a new lustrous carbon carrier (Rcw, Rmw, Pw, Pw, PD) were determined. The introduction of shungite as a replacement for coal dust in the hydrocarbon resin system demonstrated the achievement of an optimum moulding sand composition for practical use in casting technology. Using chromatographic techniques (Py-GC/MS, GC), the positive effect of shungite on the quantity and quality of the gaseous products generated from the moulding sand during the thermal destruction of its components was noted, thus confirming the reduced environmental footprint of the new carbon additive compared to the commonly used lustrous carbon carriers. The test casting obtained in the mould of the organobentonite moulding sand and the shungite/hydrocarbon resin mixture showed a significantly better accuracy of the stepped model shape reproduction and surface smoothness compared to the casting obtained with the model moulding sand.

Funder

AGH project

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3