Porous Thermoplastic Molded Regenerated Silk Crosslinked by the Addition of Citric Acid

Author:

Bucciarelli Alessio1,Vighi Nicola2,Bossi Alessandra Maria3ORCID,Grigolo Brunella1ORCID,Maniglio Devid4ORCID

Affiliation:

1. Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy

2. Vetrodomus S.P.A., Via G. Bormioli 48, 25135 Brescia, Italy

3. Department of Biotechnology, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy

4. Department of Industrial Engineering, BIOtech Research Center, University of Trento, Via delle Regole 101, 38123 Trento, Italy

Abstract

Thermoplastic molded regenerated silk fibroin was proposed as a structural material in tissue engineering applications, mainly for application in bone. The protocol allows us to obtain a compact non-porous material with a compression modulus in the order of a Giga Pascal in dry conditions (and in the order of tens of MPa in wet conditions). This material is produced by compressing a lyophilized silk fibroin powder or sponge into a mold temperature higher than the glass transition temperature. The main purpose of the produced resin was the osteofixation and other structural applications in which the lack of porosity was not an issue. In this work, we introduced the use of citric acid in the thermoplastic molding protocol of silk fibroin to obtain porosity inside the structural material. The citric acid powder during the compression acted as a template for the pore formation. The mean pore diameter achieved by the addition of the higher amount of citric acid was around 5 μm. In addition, citric acid could effectively crosslink the silk fibroin chain, improving its mechanical strength. This effect was proved both by evaluating the compression modulus (the highest value recorded was 77 MPa in wet conditions) and by studying the spectra obtained by Fourier transform infrared spectroscopy. This protocol may be applied in the near future to the production of structural bone scaffolds.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3