Investigation into Rheological Behavior of Warm-Mix Recycled Asphalt Binders with High Percentages of RAP Binder

Author:

Xu Hui1,Sun Yiren1ORCID,Chen Jingyun1,Li Jiyang1,Yu Bowen1,Qiu Guoqing1,Zhang Yan2,Xu Bin3

Affiliation:

1. School of Transportation and Logistics, Dalian University of Technology, Dalian 116024, China

2. City Institute, Dalian University of Technology, Dalian 116600, China

3. Research and Development Center of Transport Industry of New Materials, Technologies Application for Highway Construction and Maintenance (Zhong Lu Gao Ke (Beijing) Road Technology Co., Ltd.), Ministry of Transport, Beijing 100088, China

Abstract

The rheological properties of warm-mix recycled asphalt binders are critical to enhancing design quality and interpreting the performance mechanisms of the corresponding mixtures. This study investigated the rheological behavior of warm-mix recycled asphalt binders with high percentages of RAP binder. The effects of two warm-mix additives [wax-based Sasobit (S) and surfactant-based Evotherm-M1 (E)], a rejuvenating aging [ZGSB (Z)], four RAP binder contents (0%, 30%, 50% and 70%), and three aging states (unaged, short-term aged and long-term aged) were evaluated in detail using the dynamic shear rheometer (DSR), bending beam rheometer (BBR) and Brookfield rotational viscometer tests as well as conventional performance tests over the whole range of temperatures. The results showed that the rejuvenating agent Z effectively alleviated the aging effect of the RAP binder; however, it could hardly eliminate entirely this negative impact, especially at higher RAP binder contents. The addition of S remarkably lowered the apparent viscosity of the warm-mix recycled binders by up to 35.0%, whereas E had little influence on the binder viscosity due to its surfactant nature. Besides, S performed much better in improving rutting resistance (with the increase of up to 411.3% in |G*|/sinδ) than E, while E exhibited superior fatigue performance (with the reduction of up to 42.3% in |G*|·sinδ) to that of S. In terms of the thermal cracking resistance, E had very slight influence and S even yielded an adverse impact (with the increase of up to 70.2% in Sa and the decrease of up to 34.1% in m-value). Further, S broadened the ranges of pavement service temperatures by about 12 °C, whereas E almost did not change the PG grades of the binders. Finally, regarding the characteristics of viscoelastic master curves, S considerably improved the dynamic modulus and lowered the phase angle of the binders over a wide range of frequencies and temperatures but led to the failure of the time-temperature superposition principle due to its thermorheologically complex nature. Nevertheless, in this regard, the effect of E was found very mild.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Liaoning Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3