Nano-Silicon@Exfoliated Graphite/Pyrolytic Polyaniline Composite of a High-Performance Cathode for Lithium Storage

Author:

Wu Qian12ORCID,Zhu Yinghong1,Duan Haojie2,Zhu Lin2,Zhang Yuting2,Xu Hongqiang2,Egun Ishioma Laurene23,He Haiyong2

Affiliation:

1. College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China

2. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China

3. Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, China

Abstract

In this paper, a Si@EG composite was prepared by liquid phase mixing and the elevated temperature solid phase method, while polyaniline was synthesized by the in situ chemical polymerization of aniline monomer to coat the surface of nano-silicon and exfoliated graphite composites (Si@EG). Pyrolytic polyaniline (p-PANI) coating prevents the agglomeration of silicon nanoparticles, forming a good conductive network that effectively alleviates the volume expansion effect of silicon electrodes. SEM, TEM, XRD, Raman, TGA and BET were used to observe the morphology and analyze the structure of the samples. The electrochemical properties of the materials were tested by the constant current charge discharge and cyclic voltammetry (CV) methods. The results show that Si@EG@p-PANI not only inhibits the agglomeration between silicon nanoparticles and forms a good conductive network but also uses the outermost layer of p-PANI carbon coating to effectively alleviate the volume expansion of silicon nanoparticles during cycling. Si@EG@p-PANI had a high initial specific capacity of 1491 mAh g−1 and still maintains 752 mAh g−1 after 100 cycles at 100 mA g−1, which shows that it possesses excellent electrochemical stability and reversibility.

Funder

High-quality Development Project of the Ministry of Industry and Information Technology of the People’s Republic of China

National Natural Science Foundation of China

Ningbo S&T Innovation 2025 Major Special Program

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3