Model-Based 3D Gaze Estimation Using a TOF Camera

Author:

Shen Kuanxin1ORCID,Li Yingshun2,Guo Zhannan2,Gao Jintao1,Wu Yingjian1

Affiliation:

1. School of Chemical Process Automation, Shenyang University of Technology, Liaoyang 111003, China

2. School of Control Science and Engineering, Dalian University of Technology, Dalian 116024, China

Abstract

Among the numerous gaze-estimation methods currently available, appearance-based methods predominantly use RGB images as input and employ convolutional neural networks (CNNs) to detect facial images to regressively obtain gaze angles or gaze points. Model-based methods require high-resolution images to obtain a clear eyeball geometric model. These methods face significant challenges in outdoor environments and practical application scenarios. This paper proposes a model-based gaze-estimation algorithm using a low-resolution 3D TOF camera. This study uses infrared images instead of RGB images as input to overcome the impact of varying illumination intensity in the environment on gaze estimation. We utilized a trained YOLOv8 neural network model to detect eye landmarks in captured facial images. Combined with the depth map from a time-of-flight (TOF) camera, we calculated the 3D coordinates of the canthus points of a single eye of the subject. Based on this, we fitted a 3D geometric model of the eyeball to determine the subject’s gaze angle. Experimental validation showed that our method achieved a root mean square error of 6.03° and 4.83° in the horizontal and vertical directions, respectively, for the detection of the subject’s gaze angle. We also tested the proposed method in a real car driving environment, achieving stable driver gaze detection at various locations inside the car, such as the dashboard, driver mirror, and the in-vehicle screen.

Funder

Liaoning Provincial Department of Education Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3