The Correlation between Macroscopic Image and Object Properties with Bubble Size in Flotation

Author:

Vinnett LuisORCID,Cornejo IvánORCID,Yianatos Juan,Acuña Claudio,Urriola Benjamín,Guajardo Camila,Esteban Alex

Abstract

This paper studies the correlation between different macroscopic features of image regions and object properties with the Sauter diameter (D32) of bubble size in flotation. Bubbles were sampled from the collection zone of a two-dimensional flotation cell using a McGill Bubble Size Analyzer, and photographed bubbles were processed using image analysis. The Sauter mean diameters were obtained under different experimental conditions using a semiautomated methodology, in which non-identifiable bubbles were manually characterized to estimate the bubble size distribution. For the same processed images, different image properties from their binary representation were studied in terms of their correlation with D32. The median and variability of the shadow percentage, aspect ratio, power spectral density, perimeter, equivalent diameters, solidity, and circularity, among other image or object properties, were studied. These properties were then related to the measured D32 values, from which four predictors were chosen to obtain a multivariable model that adequately described the Sauter diameter. After removing abnormal gas dispersion conditions, the multivariable linear model was able to represent D32 values (99 datasets) for superficial gas rates in the range of 0.4–2.5 cm/s, for four types of frothers and surfactant concentrations ranging from 0 to 32 ppm. The model was tested with 72 independent datasets, showing the generalizability of the results. Thus, the approach proved to be applicable at the laboratory scale for D32 = 1.3–6.7 mm.

Funder

ANID

Universidad Técnica Federico Santa María

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3