Selective Neodymium Enrichment of Sulfides as a “Fingerprint” of Late Processes of Ore-Formation: Insight into Sm-Nd Isotopes for Sulfides from Magmatic Cu-Ni-PGE Complexes and Hydrothermal Pb-Zn, Au-Mo, and Gold Deposits

Author:

Serov Pavel A.ORCID

Abstract

The effect of enrichment with Nd in sulfides from magmatic Cu-Ni-PGE complexes and sulfide ores from hydrothermal Pb-Zn, Au-Mo, and gold deposits was found and characterized. This paper concerns the report and analysis of isotopic geochemical data on the sulfide ores from the large Paleoproterozoic mafic–ultramafic magmatic Cu-Ni-PGE complexes of Fennoscandia and the literature data on sulfide ores from the Qingchengzi Pb-Zn deposit (northeastern China), Tokuzbay gold deposit (southern Altai, northwestern China), and Dahu Au-Mo deposit (central China). The mineral/rock partition coefficients for Nd and Sm (the DNd/DSm ratio) are defined as a prospective tool for the reconstruction of the sulfide mineral formation and geochemical substantiation of possible sources of ore-forming fluids for deposits of various genetic types. The observed selective Nd accumulation indicates either hydrothermal or metamorphic (metasomatic) impact, which is associated with increased Nd mobility and its migration or diffusion. Due to this process, there is a relative Nd accumulation in comparison with Sm and a consequent increase in the DNd/DSm ratio. At the isotopic system level, this leads to a sufficient decrease in the Sm/Nd ratio for the secondary sulfides of such kind. The revealed effect may serve as an isotopic geochemical marker of recent processes. These processes are quite frequently associated with the most important ore formation stages, which bear the commercially valuable concentrations of ore components. Sulfides from magmatic Cu-Ni-PGE complexes are more characterized by the selective accumulation of Nd in the sequential sulfide mineral formation. For sulfides from hydrothermal deposits, the effect of Nd enrichment is more intense and closely related to ore-forming fluids, under the influence of which sulfide mineralization is formed in multiple stages. The study aims at expanding the knowledge about fractionation and the behavior of lanthanides in ore-forming processes and allows the development of additional criteria for the evaluation of the ore potential of deposits with different geneses, ages, and formation conditions.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3