Abstract
Rare earth elements (REEs) are widely used in high-tech industries and are important basic raw materials. Bastnaesite is one of the most important minerals used in the rare earth extraction industry, and the efficient development of it is the key guarantee for the safe supply of rare earth raw materials. In this study, a novel method for dissolving bastnaesite using a carboxyl-functionalized ionic liquid ([Hbet][Tf2N]) is proposed. This innovative method provides a collaborative model with the dissolution and synchronous extraction of rare earth elements during the heating and cooling of the [Hbet][Tf2N]–H2O system. In the heating process, rare earth elements can be dissolved in a weakly acidic environment of ionic liquid without the trouble of HF escaping, and the leaching efficiencies of rare earth elements are above 95%. During the cooling of the leaching system, the rare earth ions in the dissolved state are extracted into the ionic liquid phase due to the two-phase stratification of [Hbet][Tf2N] and aqueous solution. It has been proved that rare earth ions recovery and ionic liquid regeneration can be achieved by back extraction using oxalic acid for the REEs-loaded ionic liquid.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Henan Provinc
Guangxi Science and Technology Major Project
National Key R&D Program of China
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献