Elemental Gains and Losses during Hydrothermal Alteration in Awak Mas Gold Deposit, Sulawesi Island, Indonesia: Constraints from Balanced Mineral Reactions

Author:

Ernowo Ernowo,Idrus ArifudinORCID,Meyer Franz Michael

Abstract

Hydrothermal gold mineralization is commonly associated with metasomatic processes resulting from interaction of hostrock with infiltrating hot aqueous fluids. Understanding of the alteration mechanism requires quantification of element changes in altered rock, relative to the unaltered or least-altered rock, representing the protolith. Balanced mineral reactions are used to gain quantitative insight into the alteration process associated with gold mineralization at the Awak Mas deposit. Three representative samples were carefully selected from the least-altered pyllite and the two alteration zones bordering the mineralization. Mineral mode, textural features, and mineral compositions were studied by microscopy and electron microprobe analyzer (EMPA). Quantitative modal analysis was performed with a Quanta 650 F QEMSCAN® system. The hydrothermal alteration sequence around the mineralization starts with the proximal albite–ankerite–pyrite alteration zone via the distal albite–chlorite alteration zone to the least-altered phyllite wall-rock. Balanced mineral reaction calculations were performed to evaluate elemental gains and losses. Most noticeable is the addition of Si, Na and Ca to each alteration zone. This alteration is represented by the almost complete replacement of muscovite by albite. The addition of Fe and S was highest in the albite–ankerite–pyrite alteration zone. Alteration of the least altered phyllite to the albite–chlorite zone involved a mass increase of 14.5% and a neglectable volume increase of 0.6%. The mass and a volume increase from the least altered phyllite to the albite–ankerite–pyrite zone was 40.5% and 0.47%, respectively. The very low volume change during alteration is also corroborated by the textural preservation indicating isovolumetric metasomatic reactions. The replacement of muscovite by albite may have had an important effect on the change of the rock failure mode from ductile to brittle, with consequences for the focusing of fluid flow.

Funder

Ministry of Energy and Mineral Resources, Republic of Indonesia

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference47 articles.

1. Composition-volume relationships of metasomatism;Gresens;Chem. Geol.,1967

2. The isocon diagram; a simple solution to Gresens’ equation for metasomatic alteration;Grant;Econ. Geol.,1986

3. Balanced mineral reactions for alteration zones developed in auriferous shear zones of the Hutti Mine, Dharwar Craton, India;Kolb;Z. Dtsch. Ges. Geowiss.,2008

4. Local modification of rock chemistry by deformation;Kerrich;Contrib. Miner. Petrol.,1977

5. A least-squares approach to mass transport calculations using the isocon method;Baumgartner;Econ. Geol.,1995

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3