New Data for the Internal Structure of Ultramafic Hosted Seafloor Massive Sulfides (SMS) Deposits: Case Study of the Semenov-5 Hydrothermal Field (13°31′ N, MAR)

Author:

Firstova AnnaORCID,Cherkashov Georgy,Stepanova Tamara,Sukhanova Anna,Poroshina Irina,Bel’tenev Victor

Abstract

The internal structure of Seafloor Massive Sulfides (SMS) deposits is one of the most important and complex issues facing the study of modern hydrothermal ore systems. The Semenov-5 hydrothermal field is a unique area where mass wasting on the slope of the oceanic core complex (OCC) structure exposes the subsurface portion of the deposit and offers an exceptional opportunity to observe massive sulfides that have formed not only on the seafloor but in sub-seafloor zones as well. This paper examines the internal structure of the OCC-related Semenov-5 hydrothermal field along with analysis of the mineralogy and chemistry of different parts of sulfide deposit. The seafloor deposit is comprised of pyrite, marcasite, hematite, goethite, lepidocrocite, rare pyrrhotite, isocubanite and Co-rich pyrite. Sulfide chemistry indicates the prevailing influence of ultramafics on their composition irrespective of the spatial relation with basalt lavas. Sub-seafloor mineralization is associated with ultramafic rocks and is represented by massive and disseminated sulfides. Pyrrhotite, isocubanite, pyrite, chalcopyrite, Co-rich pyrite, quartz with rutile, quarts with hematite and Cr-spinels are fixed in massive subseafloor mineralization. The presence of Cr-spinels as well as a very high Cr content are regarded as indicators of the metasomatic nature of this part of the deposit that had formed as a result of ultramafic replacement. As a result, three zones of a hydrothermal ore-forming system have been described: massive sulfides precipitated from hot vents on the surface of the seafloor, massive sulfides formed due to replacement of ultramafics below the seafloor and disseminated sulfide mineralization-filled cracks in hosted rocks which have formed stockwork around metasomatic massive sulfides. Despite differences in the mineral and geochemical composition of sub-seafloor and seafloor mineralization, all minerals subject to the sample formed as a consequence of fluid circulation in ultramafic rocks and were linked by a common ore-forming process.

Funder

Russian Science Foundation research project

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference36 articles.

1. Recent massive sulphide deposits of the Semenov ore district, Mid-Atlantic Ridge, 13°31° N: Associated rocks of the oceanic core complex and their hydrothermal alteration;Pertsev;Geol. Ore Depos.,2012

2. Morphology and Internal Structure of Hydrothermal Ore Bodies Formed in Various Geological Settings of the World Ocean;Cherkashov;Okeangeology,2021

3. van Wijk, J.M. (2018, September 30). Public Report: Blue Mining, Breakthrough Solutions for Mineral Extraction and Processing in Extreme Environments. Available online: http://www.bluemining.eu/download/project_results/public_reports/Blue-mining-Public-Report-2018.pdf.

4. The internal structure of an active sea-floor massive sulphide deposit;Humphris;Nature,1995

5. Massive sulfide deposits in relation to geotectonics;Sawkins;Spec. Pap. Geol. Ass. Can.,1976

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3