Source Apportionment and Probabilistic Ecological Risk of Heavy Metal(loid)s in Sediments in the Mianyang Section of the Fujiang River, China

Author:

Du Huaming,Lu Xinwei

Abstract

The Mianyang section of the Fujiang River is Mianyang City’s main source of drinking water; therefore, we must ascertain this aquatic ecosystem’s heavy metal(loid)s (HMs) pollution status to protect the health of local residents. We examined 27 surface sediment samples using X-ray fluorescence spectrometry for 10 widely concerned HMs. We applied spatial interpolation, the positive matrix factorization, and a potential ecological risk index to determine the spatial distribution, source, and potential ecological risk of HMs in the sediment, respectively. Our results showed that Mn, Co, Cr, As, Zn, and Pb were disturbed by human activities. The levels of HM content at different sites were different due to the influence of urban human activities. Our source apportionment results showed that As, Cu, Pb, and Mn principally originated from mixed sources of industry and traffic; Ba and Co were chiefly derived from architectural sources; Ni, Zn, and V were mainly from natural sources; and Cr originated from industrial sources. Mixed, architectural, natural, and industrial sources account for 25.62%, 25.93%, 24.52%, and 23.93% of the total HM content, respectively. The HMs were of low ecological risk, which were mainly caused by As and Co. In our study, the mixed source was the priority anthropogenic source, and As and Co were the priority elements for further risk control in the Mianyang section of the Fujiang River.

Funder

National Natural Science Foundation of China

Research and Development Key Project of Shaanxi Province

Foundation of Mianyang Normal University

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3