Systematic Evaluation for the Impact of the Geological Conditions on the Adsorption Affinities of Calcite as an Adsorbent of Zn2+ Ions from Aqueous Solutions: Experimental and Theoretical Studies

Author:

Nasser Nourhan,El-Sayed Mohamed I.,Othman Sarah I.,Allam Ahmed A.,Al-Labadi Ibrahim G.,Abukhadra Mostafa R.ORCID,Bellucci StefanoORCID

Abstract

Three samples of calcite (calcite crystal (CA), calcite of limestone (L.CA), and metamorphosed calcite (marble) (M.CA)) were assessed as adsorbents of Zn (II) to consider the impact of the different geological conditions. The three samples exhibit remarkable changes in their Zn (II) retention capacities (Qsat = 384.6 mg/g (CA), 274.5 mg/g (L.CA), and 512.6 mg/g (M.CA)). The retention systems of the three calcite samples were described on the basis of the suggested statistical physics-based equilibrium studies as well as the traditional kinetic and isotherm models. However, the M.CA samples exhibited the best retention capacity, the steric properties reflecting a higher active site density of CA (Nm (Zn) = 113.46 mg/g) than both M.CA (Nm (Zn) = 82.8 mg/g) and L.CA (Nm (Zn) = 52.4 mg/g) at 323 K. This was assigned to the controlling effect of the sequestered numbers of Zn (II) per site on the surfaces of the calcite phase (n(Zn) = 3.39 (CA), 5.24 (L.CA), and 6.19 (M.CA)) in addition to the higher surface area and ion exchange of the metamorphosed and deformed M.CA. The previous n(Zn) values suggested the retention of Zn (II) by a multi-ionic mechanism in a vertical orientation. The Gaussian energies (8 to 16 KJ/mol) and retention energies (˂40 KJ/mol) of Zn (II) by CA and L.CA suggested complex physical and weak chemical mechanisms involving ion exchange, hydrogen bonding, dipole bonding forces, electrostatic attractions, and van der Waals forces. The thermodynamic properties were illustrated on the basis of the internal energy, free enthalpy, and entropy functions, which validate the endothermic and spontaneous nature of the Zn (II) retention system by the three calcite samples.

Funder

Princess Nourah bint Abdulrahman University Researchers Supporting Project

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3