The Origin of Carbonate Components in Carbonate Hosted Pb-Zn Deposit in the Sichuan-Yunnan-Guizhou Pb-Zn Metallogenic Province and Southwest China: Take Lekai Pb-Zn Deposit as an Example

Author:

He Zhiwei,Li BoORCID,Wang Xinfu,Xiao Xianguo,Wan Xin,Wei Qingxi

Abstract

The Lekai lead–zinc (Pb-Zn) deposit is located in the northwest of the Sichuan–Yunnan–Guizhou (SYG) Pb-Zn metallogenic province, southwest China. Even now, the source of the metallogenic fluid of Pb-Zn deposits in the SYG Pb-Zn metallogenic province has not been recognized. Based on traditional lithography, rare earth elements (REEs), and carbon–oxygen (C–O) isotopes, this work uses the magnesium (Mg) isotopes of hydrothermal carbonate to discuss the fluid source of the Lekai Pb-Zn deposit and discusses the fractionation mechaism of Mg isotopes during Pb-Zn mineralization. The REE distribution patterns of hydrothermal calcite/dolomite are similar to that of Devonian sedimentary carbonate rocks, which are all present steep right-dip type, indicating that sedimentary carbonate rocks may be serve as the main source units of ore-forming fluids. The C–O isotopic results of hydrothermal dolomite/calcite and the δ13CPDB–δ18 OSMOW diagram show that dolomite formation is closely related to the dissolution of marine carbonate rocks, and calcite may be affected to some extent by basement fluid. The Mg isotopic composition of dolomite/calcite ranges from −3.853‰ to −1.358‰, which is obviously lighter than that of chondrites, mantle, or seawater and close to that of sedimentary carbonate rock. It shows that the source of the Mg element in metallogenic fluid of Lekai Pb-Zn deposit may be sedimentary carbonate rock rather than mantle, chondrites, or seawater. In addition, the mineral phase controls the Mg isotope fractionation of dolomite/calcite in the Lekai Pb-Zn deposit. Based on the geological, mineralogical, and hydrothermal calcite/dolomite REE, C–O isotope, and Mg isotope values, this work holds that the mineralization of the Lekai Pb-Zn deposit is mainly caused by basin fluids, influenced by the basement fluids; the participation of basement fluids affects the scale and grade of the deposit.

Funder

National Natural Science Foundation of China

Key Disciplines Construction of Kunming University of Science and Technology

Yunnan Ten Thousand Talents Plan Young & Elite Talents Project

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference76 articles.

1. The giant South China Mesozoic low-temperature metallogenic province: Reviews and a new geodynamic model;Hu;J. Asian Earth Sci.,2017

2. Features of fluid inclusions and sources of ore-forming fluid in the Maoping carbonate-hosted Zn-Pb-(Ag-Ge) deposit, Yunnan, China;Han;Acta Petrol. Sin.,2007

3. Mineraliztion model of rich Ge-Ag-bearing Zn-Pb polymetallic deposit concentrated district in Northeastern Yunnan, China;Han;Acta Geol. Sin. Ed.,2012

4. Fluid inclusion and sulfur isotopic northwestern Guizhou, China;Zhu;Acta Petrol. Sin.,2016

5. Sources of metallogenic materials and metallogenic mechanism of Daliangzi Ore Field in Sichuan Province: Constraints from geochemistry of S, C, H, O, Sr isotope and trace element in sphalerite;Yuan;Actor Petrol. Sircica,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3