Development of Nanoscale Hydrated Titanium Oxides Support Anion Exchange Resin for Efficient Phosphate Removal from Water

Author:

Zhu Mingxin,Teng Yue,Wu Dong,Zhu Jiawei,Zhang Yi,Liu Zhiying

Abstract

In this work, a macroporous strongly basic anion exchange resin D201 was used as the matrix and loaded with nano hydrated titanium oxide (HTO) to fabricate a novel resin-based nano hydrated titanium oxide adsorbent (HTO-D201), which was characterized by scanning electron microscope-energy dispersion spectroscopy (SEM-EDS), transmission electron microscope (TEM), X-ray diffraction (XRD) and Brunauer-Emmett-Teller (BET) analysis. Adsorption isotherm, pH influence competitive adsorption and column adsorption experiments were conducted to investigation the adsorption behavior of HTO-D201 to phosphorus in water. The adsorption effect of adsorbent HTO-D201 on phosphorus in water, and the corresponding adsorption mechanism, are discussed. It was observed that HTO-D201 exhibited spontaneous adsorption behavior with Langmuir fitting maximum adsorption capacity of 34.08 mg∙g−1 under a pH of 6.8 and a temperature of 298 K. Adsorption isotherms confirmed that enhancing temperature could promote the adsorption process. SO42−, NO3− and Cl− were used as competing ions in competitive adsorption, which confirmed better anti-interference ability of HTO-D201 compared with that of unmodified D201. The column adsorption experiment implied that HTO-D201 possessed a stable structure and good dynamic adsorption performance, with effective processing capacity of 420BV, which could be regenerated and recycled. The adsorption mechanism of HTO-D201 to phosphorus in water is discussed, which was ascribed to a quaternary amine group on the resin and a hydroxyl group on the HTO. This work shows that HTO-D201 is a promising adsorbent that a possesses excellent phosphorus-removing capacity from wastewater and the potential for practical application.

Funder

National Key Research and Development Project of China

the University Science Research Project of Jiangsu Province

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3