Geochemical Characteristics of Soils to the Impact of Diamond Mining in Siberia (Russia)

Author:

Gololobova Anna,Legostaeva Yana,Popov Vladimir,Makarov VictorORCID,Shadrinova OlesyaORCID

Abstract

This article presents the results of long-term research and monitoring of the soil cover exposed to the impact of the mining and processing plant developing diamond deposits in the northeast of Siberia. The soil collection includes 436 samples of different types of Cryosols. Soil pH; soil organic carbon (SOC); granulometric composition; and mobile forms of Pb, Ni, Mn, Cd, Co, Cr, Zn, Cu, and As were identified in the samples. Multivariate statistics of the correlation matrix, clustering analysis (CA), and principal component analysis (PCA) were used to determine the sources of heavy metals. The intensity of the accumulation of chemical elements in the soil was assessed using calculated concentration coefficients (Kc) and the index of total contamination of the soil cover (Zc). In the study area, Cryosols are characterized by biogenic accumulation of Ni, Mn, and Cd in the upper soil layer and Cr, Ni, Co, Mn, and Cu in the suprapermafrost horizon. Correlation matrix, CA, and PCA revealed three distinct sources that could be considered for the investigated potentially toxic elements (PTEs): anthropogenic, lithogenic, and the source which comes from a mixed contribution of anthropogenic and lithogenic factors. The most anthropogenic contribution in the heavy metals in the study area appears in Zn, Cd, As, and Pb. The assessment interpreted that origin of Mn in the area is most likely to be a natural source. The content of Co, Cr, and Ni are controlled by both lithogenic control and anthropogenic sources. Active accumulation of mobile forms of Mn, Zn, and Ni with anomalously high concentration coefficients can be traced in the soils in the impact zone of mining operations. Anthropogenic soil contamination is spread over an area of 260 km2.

Funder

Ministry of education of the Russian Federation

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference84 articles.

1. The geotechnologies subsurface free space as a fundamental factor of the mining complex impact on the environment. News of the Higher Institutions;Slavikovsky;Mining J.,2011

2. Review of foreign researches in the field of mining ecology;Zenkov;Mining J.,2016

3. Aklambetova, K.M. (2002, January 22). Environmental consequences of mining operations and their impact on the environment. Proceedings of the International Conference Proceedings. Current Problems of Human Health and the Formation of the Environment, Karaganda, Russia.

4. Geochemical characteristics of technogenic soils of the Southern Ural mining landscapes;Shafigulina;Her. ASRB 20,2015

5. Environmental Geochemical Assessment of Technogenic Soils;Sarapulova;J. Mining Inst.,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3