Metamorphic Ages of the Jurassic Accretionary Complexes in the Kanto Mountains, Central Japan, Determined by K–Ar Dating of Illite: Implications for the Tectonic Relationship between the Chichibu and Sanbagawa Belts

Author:

Lu Zhiqiang,Shimizu IchikoORCID,Itaya TetsumaruORCID

Abstract

To determine the metamorphic ages of the accretionary complexes in the Northern Chichibu Belt in SW Japan, K–Ar dating was conducted using weakly metamorphosed sedimentary rocks collected from the Kanto Mountains, Central Japan. Whole-rock ages were obtained for chert and red shale samples, and the mineral ages of fine-grained illite with a grain size of less than 4 μm were obtained for chert, red shale, mudstone, acidic tuff, and basic tuff. The K–Ar ages of chert and red shale presented large variations, with systematically older ages compared to those of mudstone and tuff in the same strata. The influence of submarine hydrothermal activities on chert and red shale before subduction is a possible cause of this deviation. The illite samples, which were fractionated into four grain-size classes using a suspension method, yielded older ages and higher illite crystallinity (i.e., smaller values of Kübler’s crystallinity index) for larger grain-size classes. The peak metamorphic ages were determined from the K–Ar ages of the 3–4 μm class illite in mudstone and tuff. The Late Jurassic to the Earliest Cretaceous accretionary complex of the lowest structural unit (Kashiwagi Unit) was dated within a small range between 117–110 Ma, which is distinctly older than the K–Ar ages of white mica reported from the Sanbagawa Belt. The peak metamorphic age of acidic tuff (113 Ma) at the type locality of the Mikabu Greenstones indicates that the subducted Mikabu seamount is a constituent of the Kashiwagi Unit. The peak metamorphic ages of the Manba and Kamiyoshida Units were obtained as 132–107 Ma and 163–144 Ma, respectively. Major structural discontinuity is suggested within the Middle Jurassic accretionary complexes.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference76 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3