Modelling Bubble Flow Hydrodynamics: Drift-Flux and Molerus Models

Author:

Gomez Cesar O.,Maldonado Miguel

Abstract

Minerals flotation is a widely used process to produce base metal concentrates through the selective capture of particles on the surface of bubbles. The process performance depends on the size distribution of the bubble population generated by gas dispersion, which is characterized by three variables: superficial gas velocity, gas holdup, and bubble size. A literature review revealed that current instrumentation cannot provide reliable on-line measurement of these variables except for gas velocity. There are some promising alternatives for gas holdup, but bubble size measurement will continue to be unavailable. The use of a model that integrates the three gas dispersion variables makes possible the calculation of one of the variables when knowing the values of the other two. Modelling bubble flow has been pursued using two approaches: determining the bubble terminal velocity reduction by the presence of other bubbles and regarding the bubble swarm as a packed bed through which a fluid is allowed to flow. Models based on these approaches (drift-flux and Molerus, respectively) were found in the literature and used to assess their prediction ability. Gas holdup predictions for known values of gas velocity and bubble size showed similar trends for both models; Molerus results were always higher than those obtained with the drift-flux model, and the difference between both predictions increased with bubble size and gas velocity. A relationship between bubble surface area flux and gas holdup was explored (a single line was expected); Molerus values showed a noticeable effect of bubble size, while drift-flux results showed a minor effect of bubble size only for gas holdups below 10%. Model accuracy was established using a data set collected to characterize frother roles in flotation for six commercial frothers, which included values of the three gas dispersion variables measured simultaneously and reported at the same conditions. The results indicate that bubble size predictions obtained from Molerus model are closer to the measured values than those obtained from the drift-flux model. Drift-flux predictions systematically underestimated the measured bubble size, with relative errors between 10 and 30%, while Molerus predictions showed values around the measured size with relative errors not larger than 15% (and in most cases below 10%). The accuracy of the Molerus predictions is acceptable for applications in the control of individual cells and flotation circuits operation. Further testing to assess the performance of Molerus model with data collected in lab and industrial mechanical cells and columns, where conditions in the test volume may not be stable or homogeneous, is recommended.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3