Accelerating SARS-CoV-2 Vaccine Development: Leveraging Novel Hybrid Deep Learning Models and Bioinformatics Analysis for Epitope Selection and Classification

Author:

Ameen Zubaida Said1,Mostafa Hala2,Ozsahin Dilber Uzun34,Mubarak Auwalu Saleh1

Affiliation:

1. Operational Research Centre in Healthcare, Near East University, TRNC Mersin 10, Nicosia 99138, Turkey

2. Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia

3. Department of Medical Diagnostic Imaging, College of Health Science, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates

4. Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates

Abstract

It is essential to use highly antigenic epitope areas, since the development of peptide vaccines heavily relies on the precise design of epitope regions that can elicit a strong immune response. Choosing epitope regions experimentally for the production of the SARS-CoV-2 vaccine can be time-consuming, costly, and labor-intensive. Scientists have created in silico prediction techniques based on machine learning to find these regions, to cut down the number of candidate epitopes that might be tested in experiments, and, as a result, to lessen the time-consuming process of their mapping. However, the tools and approaches involved continue to have low accuracy. In this work, we propose a hybrid deep learning model based on a convolutional neural network (CNN) and long short-term memory (LSTM) for the classification of peptides into epitopes or non-epitopes. Numerous transfer learning strategies were utilized, and the fine-tuned method gave the best result, with an AUC of 0.979, an f1 score of 0.902, and 95.1% accuracy, which was far better than the performance of the model trained from scratch. The experimental results obtained show that this model has superior performance when compared to other methods trained on IEDB datasets. Using bioinformatics tools such as ToxinPred, VaxiJen, and AllerTop2.0, the toxicities, antigenicities, and allergenicities, respectively, of the predicted epitopes were determined. In silico cloning and codon optimization were used to successfully express the vaccine in E. coli. This work will help scientists choose the best epitope for the development of the COVID-19 vaccine, reducing cost and labor and thereby accelerating vaccine production.

Funder

Princess Nourah bint Abdulrahman University

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3