Optimization Design of an Intermediate Fluid Thermoelectric Generator for Exhaust Waste Heat Recovery

Author:

Zhang Wei1,Li Wenjie2,Li Shuqian3,Xie Liyao2,Ge Minghui2,Zhao Yulong2

Affiliation:

1. College of Mechanical and Electrical Engineering, Shihezi University, Shihezi 832003, China

2. Hebei Key Laboratory of Thermal Science and Energy Clean Utilization, Hebei University of Technology, Tianjin 300401, China

3. Hebei Technology Innovation Center of Phase Change Thermal Management of Data Center, Hebei University of Water Resources and Electric Engineering, Cangzhou 061001, China

Abstract

The intermediate fluid thermoelectric generator (IFTEG) represents a novel approach to power generation, predicated upon the principles of gravity heat pipe technology. Its key advantages include high-power output and a compact module area. The generator’s performance, however, is influenced by the variable exhaust parameters typical of automobile operation, which presents a significant challenge in the design process. The present study establishes a mathematical model to optimize the design of the IFTEG. Our findings suggest that the optimal module area sees substantial growth with an increase in both the exhaust heat exchanger area and the exhaust flow rate. Interestingly, the optimal module area appears to demonstrate a low sensitivity to changes in exhaust temperature. To address the challenge of determining the optimal module area, this study introduces the concept of peak power deviation. This method posits that any deviation from the optimal module area results in an equivalent power deviation. For instance, with an exhaust heat exchanger area of 1.6 m2, the minimum peak power deviation is 27.5%, corresponding to a design module area of 0.124 m2. As such, the actual output power’s deviation from the maximum achievable output power will not exceed 27.5% for any given set of exhaust parameters. This study extends its findings to delineate the relationship between the optimal design module area and the exhaust heat exchanger area. These insights could serve as a useful guide for the design of future power generators.

Funder

Natural Science Foundation of China

National Key Research and Development Program of China

Open Project Program of the Hebei Technology Innovation Center of Phase Change Thermal Management of Data Center

Hebei Natural Science Foundation

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3