IMODBO for Optimal Dynamic Reconfiguration in Active Distribution Networks

Author:

Tu Naiwei1,Fan Zuhao1ORCID

Affiliation:

1. Faculty of Electrical and Control Engineering, Liaoning Technical University, Huludao 125105, China

Abstract

A dynamic reconfiguration method based on the improved multi-objective dung beetle optimizer (IMODBO) is proposed to reduce the operating cost of the distribution network with distributed generation (DG) and ensure the quality of the power supply, while also minimizing the number of switch operations during dynamic reconfiguration. First, a multi-objective model of distribution network dynamic reconfiguration with the optimization goal of minimizing active power loss and voltage deviation is established. Secondly, the K-means++ clustering algorithm is used to divide the daily load of the distribution network into periods. Finally, using the IMODBO algorithm, the distribution network is reconstructed into a single period. The IMODBO algorithm uses the chaotic tent map to initialize the population, which increases the ergodicity of the initial population and solves the problem of insufficient search space. The algorithm introduces an adaptive weight factor to solve the problem of the algorithm easily falling into a locally optimal solution in the early stage with weak searchability in the later stage. Levy flight is introduced in the perturbation strategy, and a variable spiral search strategy improves the search range and convergence accuracy of the dung beetle optimizer. Reconfiguration experiments on the proposed method were conducted using a standard distribution network system with distributed power generation. Multiple sets of comparative experiments were carried out on the IEEE 33-nodes and PG&E 69-nodes. The results demonstrated the effectiveness of the proposed method in addressing the multi-objective distribution network dynamic reconfiguration problem.

Funder

National Natural Science Foundation of China

Liaoning Provincial Department of Education Fund

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3