Estimation and Classification of NLFM Signals Based on the Time–Chirp Representation

Author:

Swiercz Ewa,Janczak DariuszORCID,Konopko KrzysztofORCID

Abstract

A new approach to the estimation and classification of nonlinear frequency modulated (NLFM) signals is presented in the paper. These problems are crucial in electronic reconnaissance systems whose role is to indicate what signals are being received and recognized by the intercepting receiver. NLFM signals offer a variety of useful properties not available for signals with linear frequency modulation (LFM). In particular, NLFM signals can ensure the desired reduction of sidelobes of an autocorrelation (AC) function and desired power spectral density (PSD); therefore, such signals are more frequently used in modern radar and echolocation systems. Due to their nonlinear properties, the discussed signals are difficult to recognize and therefore require sophisticated methods of analysis, estimation and classification. NLFM signals with frequency content varying with time are mainly analyzed by time–frequency algorithms. However, the methods presented in the paper belong to time–chirp domain, which is relatively rarely cited in the literature. It is proposed to use polynomial approximations of nonlinear frequency and phase functions describing signals. This allows for applying the cubic phase function (CPF) as an estimator of phase polynomial coefficients. Originally, the CPF involved only third-order nonlinearities of the phase function. The extension of the CPF using nonuniform sampling is used to analyse the higher order polynomial phase. In this paper, a sixth order polynomial is considered. It is proposed to estimate the instantaneous frequency using a polynomial with coefficients calculated from the coefficients of the phase polynomial obtained by CPF. The determined coefficients also constitute the set of distinctive features for a classification task. The proposed CPF-based classification method was examined for three common NLFM signals and one LFM signal. Two types of neural network classifiers: learning vector quantization (LVQ) and multilayer perceptron (MLP) are considered for such defined classification problem. The performance of both the estimation and classification processes was analyzed using Monte Carlo simulation studies for different SNRs. The results of the simulation research revealed good estimation performance and error-free classification for the SNR range encountered in practical applications.

Funder

Bialystok University of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3