A Highly Sensitive Piezoresistive Pressure Sensor Based on Graphene Oxide/Polypyrrole@Polyurethane Sponge

Author:

Lv Bing,Chen Xingtong,Liu ChunguoORCID

Abstract

In this work, polyurethane sponge is employed as the structural substrate of the sensor. Graphene oxide (GO) and polypyrrole (PPy) are alternately coated on the sponge fiber skeleton by charge layer-by-layer assembly (LBL) to form a multilayer composite conductive layer to prepare the piezoresistive sensors. The 2D GO sheet is helpful for the formation of the GO layers, and separating the PPy layer. The prepared GO/PPy@PU (polyurethane) conductive sponges still had high compressibility. The unique fragmental microstructure and synergistic effect made the sensor reach a high sensitivity of 0.79 kPa−1. The sensor could detect as low as 75 Pa, exhibited response time less than 70 ms and reproducibility over 10,000 cycles, and could be used for different types of motion detection. This work opens up new opportunities for high-performance piezoresistive sensors and other electronic devices for GO/PPy composites.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3