Fabrication, Experiments, and Analysis of an LBM Additive-Manufactured Flexure Parallel Mechanism

Author:

Wei Huaxian,Wang Li,Niu Xiaodong,Zhang Jian,Simeone AlessandroORCID

Abstract

Additive manufacturing technology has advantages for realizing complex monolithic structures, providing huge potential for developing advanced flexure mechanisms for precision manipulation. However, the characteristics of flexure hinges fabricated by laser beam melting (LBM) additive manufacturing (AM) are currently little known. In this paper, the fabrication and characterization of a flexure parallel mechanism through the LBM process are reported for the first time to demonstrate the development of this technique. The geometrical accuracy of the additive-manufactured flexure mechanism was evaluated by three-dimensional scanning. The stiffness characteristics of the flexure mechanism were investigated through finite element analysis and experimental tests. The effective hinge thickness was determined based on the parameters study of the flexure parallel mechanism. The presented results highlight the promising outlook of LBM flexure parts for developing novel nanomanipulation platforms, while additional attention is required for material properties and manufacturing errors.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On the applications of additive manufacturing in semiconductor manufacturing equipment;Journal of Manufacturing Processes;2024-08

2. A survey on the mechanical design for piezo-actuated compliant micro-positioning stages;Review of Scientific Instruments;2023-10-01

3. Low-cost manufacturing of high-precision personalized flexures by a hybrid 3D printing-electroforming technique;The International Journal of Advanced Manufacturing Technology;2023-08-05

4. Design of a Flexure Mechanism Based on ETC Type Two-axis Flexure Hinges for Nano-positioning;2023 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO);2023-07-31

5. Development of a Flexure Mechanism for Thin Die Pick-up Process;2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO);2022-08-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3