Reduction of Parasitic Capacitance of A PDMS Capacitive Force Sensor

Author:

Nagatomo Tatsuho,Miki Norihisa

Abstract

Polymer-based flexible micro electro mechanical systems (MEMS) tactile sensors have been widely studied for a variety of applications, such as medical and robot fields. The small size and flexibility are of great advantage in terms of accurate measurement and safety. Polydimethylsiloxane (PDMS) is often used as the flexible structural material. However, the sensors are likely subject to large parasitic capacitance noise. The smaller dielectric constant leads to smaller influences of parasitic capacitance and a larger signal-to-noise ratio. In this study, the sensor underwent ultraviolet (UV) exposure, which changes Si–CH3 bonds in PDMS to Si–O, makes PDMS nanoporous, and leads to a low dielectric constant. In addition, we achieved further reduction of the dielectric constant of PDMS by washing it with an ethanol–toluene buffer solution after UV exposure. This simple but effective method can be readily applicable to improve the signal-to-noise ratio of PDMS-based flexible capacitive sensors. In this study, we propose reduction techniques for the dielectric constant of PDMS and applications for flexible capacitive force sensors.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3