An Enhanced Evolutionary Software Defect Prediction Method Using Island Moth Flame Optimization

Author:

Khurma Ruba Abu,Alsawalqah Hamad,Aljarah IbrahimORCID,Elaziz Mohamed AbdORCID,Damaševičius RobertasORCID

Abstract

Software defect prediction (SDP) is crucial in the early stages of defect-free software development before testing operations take place. Effective SDP can help test managers locate defects and defect-prone software modules. This facilitates the allocation of limited software quality assurance resources optimally and economically. Feature selection (FS) is a complicated problem with a polynomial time complexity. For a dataset with N features, the complete search space has 2N feature subsets, which means that the algorithm needs an exponential running time to traverse all these feature subsets. Swarm intelligence algorithms have shown impressive performance in mitigating the FS problem and reducing the running time. The moth flame optimization (MFO) algorithm is a well-known swarm intelligence algorithm that has been used widely and proven its capability in solving various optimization problems. An efficient binary variant of MFO (BMFO) is proposed in this paper by using the island BMFO (IsBMFO) model. IsBMFO divides the solutions in the population into a set of sub-populations named islands. Each island is treated independently using a variant of BMFO. To increase the diversification capability of the algorithm, a migration step is performed after a specific number of iterations to exchange the solutions between islands. Twenty-one public software datasets are used for evaluating the proposed method. The results of the experiments show that FS using IsBMFO improves the classification results. IsBMFO followed by support vector machine (SVM) classification is the best model for the SDP problem over other compared models, with an average G-mean of 78%.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3