Abstract
Competing risks are frequently overlooked, and the event of interest is analyzed with conventional statistical techniques. In this article, we consider the analysis of bi-causes of failure in the context of competing risk models using the extension of the exponential distribution under progressive Type-II censoring. Maximum likelihood estimates for the unknown parameters via the expectation-maximization algorithm are obtained. Moreover, the Bayes estimates of the unknown parameters are approximated using Tierney-Kadane and MCMC techniques. Interval estimates using Bayesian and classical techniques are also considered. Two real data sets are investigated to illustrate the different estimation methods, and to compare the suggested model with Weibull distribution. Furthermore, the estimation methods are compared through a comprehensive simulation study.
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献