Abstract
In this paper, a finite time thermodynamic model of high temperature proton exchange membrane fuel cell (HT-PEMFC) is established, in which the irreversible losses of polarization and leakage current during the cell operation are considered. The influences of operating temperature, membrane thickness, phosphoric acid doping level, hydrogen and oxygen intake pressure on the maximum output power density Pmax and the maximum output efficiency ηmax are studied. As the temperature rises, Pmax and ηmax will increase. The decrease of membrane thickness will increase Pmax, but has little influence on the ηmax. The increase of phosphoric acid doping level can increase Pmax, but it has little effect on the ηmax. With the increase of hydrogen and oxygen intake pressure, Pmax and ηmax will be improved. This article also obtains the optimization relationship between power density and thermodynamic efficiency, and the optimization range interval of HT-PEMFC which will provide guidance for applicable use of HT-PEMFCs.
Funder
National Natural Science Foundation of China
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Reference38 articles.
1. Review on sustainable development of forest-based biodiesel;Liu;J. Nanjing For. Univ. Nat. Sci. Ed.,2021
2. High Temperature Proton Exchange Membrane Technology Improvement Research;Sun;Appl. Energy Technol.,2018
3. Analytical correlations for intermediate temperature PEM fuel cells
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献