The Antibacterial Properties of a Reinforced Zinc Oxide Eugenol Combined with Cloisite 5A Nanoclay: An In-Vitro Study

Author:

Nazemisalman Bahareh1,Niaz Shaghayegh2,Darvish Shayan3ORCID,Notash Ayda4,Ramazani Ali5ORCID,Luchian Ionut6ORCID

Affiliation:

1. Department of Pediatric Dentistry, School of Dentistry, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran

2. Independent Researcher, Urmia 5719175546, Iran

3. School of Dentistry, University of Michigan, Ann Arbor, MI 48104, USA

4. Independent Researcher, Tabriz 5178654714, Iran

5. Department of Pharmaceutical Biotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan 4513956184, Iran

6. Department of Periodontology, Faculty of Dental Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania

Abstract

Pulpotomies and pulpectomies are the most common clinical approach for dental caries in the primary dentition. Reinforced zinc oxide eugenol (ZOE) is an ideal material for filling in the pulp chamber after pulp therapies. The aim of this study was to assess the addition of Cloisite 5A nanoclay material to ZOE and evaluate its antibacterial properties. In this case–control study, the nanoclay nanoparticles were dissolved using a solvent (Eugenol) in different concentrations and their antibacterial properties were assessed using the agar diffusion test and biofilm analysis of Streptococcus mutans (S. mutans), Enterococcus faecalis (E. faecalis), and Escherichia coli (E. coli) in in vitro conditions using the AATCC 100 standards. The diameter of the inhibition zone was measured and assessed statistically using the SPSS software (Version 28, IBM, Chicago, IL, USA) with a significance level of 0.05. The antibacterial properties of the ZOE with nanoclay particles were significantly greater in comparison to the plain ZOE against E. faecalis, S. mutans, and E. coli. The inhibition zone against E. coli under the effect of the ZOE and nanoclay particles combined was significantly higher than that against E. faecalis and S. mutans. The current study showed that the addition of Cloisite 5A nanoclay particles can improve the antibacterial properties of ZOE significantly at certain concentrations.

Funder

Zanjan University of Medical Sciences

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3