Comparative Study on Shading Database Construction for Urban Roads Using 3D Models and Fisheye Images for Efficient Operation of Solar-Powered Electric Vehicles

Author:

Baek Jieun,Choi YosoonORCID

Abstract

Accounting for shadows on urban roads is a complex task in the operation of solar-powered electric vehicles. There have been few opportunities to compare the methods and tools for the construction of an effective shading database for urban roads. This study quantitatively investigated and compared shading matrices generated from 3D models or fisheye images. Skymaps were formed considering the geometry of nearby shading obstructions. Sun-path diagrams tracking the position of the sun by time and season were overlaid on the skymaps, and month-by-hour shading matrices were calculated. Mean squared error (MSE) was used to clarify the quantitative differences between the shading matrices. The cases were divided into A, B, and C according to the presence of buildings and trees around the survey points. Under case A (trees), case B (buildings and trees), and case C (buildings), the average MSEs between the matrices were 24.5%, 23.9%, and 2.1%, respectively. The shading matrices using either 3D models or fisheye images provided accurate shading effects caused by buildings. In contrast, the shading effects of trees were more accurately analyzed when using fisheye images. The findings of this study provide a background for constructing shading databases of urban road environments for the optimal operation of solar-powered electric vehicles.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference50 articles.

1. Key Aspects of the Paris Agreement

2. Adoption of the Paris Agreement

3. NEW AUTO: Volkswagen Group Set to Unleash Value in Battery-Electric Autonomous Mobility World

4. Climate Strategy

5. Global Light Duty EV Sales to Rise to 26.8 Mil by 2030: Platts Analytics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3